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Abstract Stochastic modelling of soil erosion is based on calculation of the 
probability of soil particle detachment, which is the probability of excess of driving 
forces above resistance forces. These probability calculations require the probability 
distribution functions (PDFs) for the main hydrodynamic and soil structure 
characteristics, estimated experimentally or theoretically. The field of hydrodynamic 
forces (flow velocities and pressure distribution though space and time) is calculated 
with Large Eddy Simulation. Soil structure is estimated in terms of Kolmogorov’s 
probabilistic approach to soil failure and aggregation. The PDF approach explicitly 
describes the process of soil erosion and gives a theoretical explanation of the great 
diversity in empirical relationships between erosion rate and main erosion factors. 
Key words  large eddy simulation; probability of detachment; probabilistic soil failure; soil erosion; 
stochastic modelling 

 
 
INTRODUCTION 
 
In spite of its major significance for strategic estimates and predictions related to many 
aspects of human activity, water erosion theory for cohesive soils is still largely undevel-
oped. For many years, efforts have mainly focused on the development of the empirical 
predictive relationships, based on data collected in areas with different climatic and land-use 
conditions (Merritt et al., 2003). The most successful example is the so-called Universal Soil 
Loss Equation (Wischmeier & Smith, 1965). More recently, erosion models that address 
causative aspects have appeared, providing strong competition for the purely empirical 
models. An important step in this development was a paper by Foster & Meyer (1972), in 
which the sediment-budget approach to erosion modelling was suggested and developed. 
However, these models are still semi-theoretical or semi-empirical, as simplified stream 
power (or bed shear stress) relationships are used to describe such complicated phenomenon 
as the rate of erosion, while the whole complexity of soil resistance to erosion is expressed 
by simplistic erodibility coefficients.  
 Purely empirical and semi-empirical models do not promise much progress in soil ero-
sion predictions and simulations. A new generation of theoretical erosion models is urgently 
needed that can account for the stochastic nature of soil erosion, based on mechanistic 
representations of the key physical processes. Recent achievements in deterministic-stochas-
tic hydrodynamics of shallow rough-bed flows (Nikora et al., 2001) make the development 
of such an approach feasible. Here we present a stochastic concept first, and then describe 
potential modelling approaches, which should provide necessary parameterization for bulk 
stochastic models and also give a deeper insight into erosion processes.  
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STOCHASTIC CONCEPT IN SOIL EROSION MODELLING 
 
The rate of soil erosion can be estimated in two main ways (Sidorchuk, 2004): by multiplica-
tion of sediment concentration by soil particle vertical velocity (velocity–concentration); and 
by spatiotemporal averaging of unstable sediment particle volume on the time period for 
detachment (double–averaging). Within the first approach, two stochastic variables are 
required to calculate the rate of soil aggregates detachment DER: unstable aggregate concen-
tration in the bed surface layer C∆ and mean vertical velocity of unstable aggregates U↑: 

↑∆= UCDER  (1) 
 
 
Bed concentration of unstable soil aggregates of a given size 
 
The bed concentration of unstable aggregates is the ratio of the volume Vu of unstable 
aggregates and the whole volume V of the bed surface layer: C∆ = Vu/V. The volume of 
unstable aggregates can be written as the product of the number of unstable aggregates N and 
the mean unstable aggregate volume Va:Vu = NVa. The volume of aggregates in a surface 
layer can be presented as the product of the number of aggregates M, exposed to the flow on 
the unit area, and their mean volume Vsm:V = MVsm. Therefore the concentration of unstable 
aggregates is: 

C∆ = NVa/MVsm (2) 

The ratio N/M is the probability (PDER) of soil aggregate detachment, and the ratio Va/Vsm is a 
measure kD of those soil aggregates’ relative size. Therefore: 

C∆ = kDPDER (3) 

An equation of this type was proposed by H. Einstein (1937), and is of main significance in 
the stochastic approach to erosion calculation. As sediment concentration appears to be 
proportional to the probability of detachment, the main goal of a stochastic methodology in 
soil erosion is to estimate this probability. The main method is to find the parameters of the 
probabilistic field of driving and resistance forces. Then, the probability of soil aggregate 
detachment can be found with the use of the condition of soil aggregate instability on the 
flow bed.  
 
 
Soil aggregate instability 
 
Soil aggregate detachment occurs because driving hydrodynamic forces exceed gravitational, 
hydrodynamic and geo-mechanical resistance and stabilizing forces. The main driving forces 
are form drag force (Ffd), wave drag force (Fwd), lift force (Fl), negative turbulent dynamic 
pressure (Fdp), pore water pressure (Fpw), and tangent component of submerged weight (Fwt). 
Resistance and stabilizing forces are normal components of submerged weight (Fwn), static 
pressure (Fsp), and positive turbulent dynamic pressure (Fdp). Mirtskhoulava (1988) and 
Lawrence (2000) showed that: 

2

2USCF dRfd ρ=  (4) 
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where CR is the coefficient of drag resistance; Cy is the coefficient of uplift; Cs is the 
coefficient of static drag; CRw is the coefficient of wave drag; U is the actual near-bed flow 
velocity, and Um is its mean (time averaged) value; λ is the coefficient of hydraulic 
resistance; Sd is the cross-sectional area of the soil aggregate, perpendicular to the flow; Va is 
the volume of the soil aggregate; Sa is the cross-sectional area of the soil aggregate, parallel 
to the flow (vertical projection); Sb is the area of the soil aggregate that is attached to other 
aggregates; Sp is the area of pores; D is the aggregate diameter; zp is capillary pressure 
height; β is the angle of flow bed local inclination; ke is the exposure of a soil aggregate and 
d is water depth. 
 Finally, there is a complex system of geo-mechanical and electro-chemical forces, 
defined as soil cohesion (Fc). This is a reactive force; its magnitude and direction are 
determined by the sum of all the above-listed active forces. Its maximum magnitude is: 

bc SCF 0=   (12) 

where C0 is soil cohesion. 
 Detachment occurs when the sum of the driving forces is larger than the sum of the 
resistance forces. For simplification, only normal components of the forces are analysed 
further. We define Θ↑ as the inertial force that results from the force balance, normalized by 
1/2ρSaCy. 
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Driving and resistance forces are stochastic variables and, consequently, the function Θ↑—
the condition of instability—has some stochastic distribution (within a spatial/temporal 
“window” at the flow bed surface) with the PDF pΘ. The PDF of the function of stochastic 
variables can usually be calculated when the PDFs of those stochastic variables are defined.  
 The probability of the detachment of the aggregate PDER is the sum of pΘ for all positive 
values of Θ↑: 

Θ= ∫
∞

ΘdpPDER
0

 (14) 
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The vertical velocity of soil aggregates 
 
The vertical velocity of soil aggregates is the second component of the formula (1) for the 
detachment rate calculation. The acceleration along the vertical co-ordinate z at the moment 
of an aggregate detachment can be derived from the second Newton law, written for the 
normal component of forces (see equation 13) and aggregate acceleration: 

↑
↑ Θρ=

∂
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2
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2

 (15) 

 In a bed layer with thickness D, an aggregate accelerates from zero velocity to its 
maximum value, U↑max. The soil integrity Is =Sb/Sa decreases from maximum Is0 to zero 
within the bed surface layer (at the distance equal to D).  
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 The integral of (15) with (13) and (16) gives a parabolic expression for actual vertical 
velocity of an aggregate in a bed layer: 
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Averaged in the bed layer, the vertical aggregate velocity mU↑ can be easily calculated from 
(17), not presented here because of the great length of the expression.  
 In the field of random forces the vertical velocity for an aggregate is a random variable 
with PDF pU↑. Its mean value:  

↑↑

∞

↑↑ ∫= dUUpU mU
0

 (18) 

is combined with PDER (14) to give the expression for the aggregate detachment rate 
calculation (1). These calculations require probability distributions of hydrodynamic and soil 
characteristics, which can be estimated both experimentally and theoretically.  
 
 
MECHANISM-BASED APPROACHES IN NUMERICAL MODELLING OF PDF  
 
Hydrodynamic characteristics 
 
To underpin and complete the probabilistic approach for modelling erosion and sedimenta-
tion processes, we require a physically based model. This mechanistic hydrodynamic model 
will provide a sound representation of the fluid flow in sedimentary environments. Shallow 
flow and changeable rough surfaces are characteristic of such environments. To be consis-
tent with our objective of considering fundamental principles of turbulence hydrodynamics 
and soil physics, simple configurations of erosion should be addressed first, with the intent 
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that the modelling can be developed to incorporate higher degrees of complexity and 
additional factors. In particular, we intend to model four situations, in which we consider: 
flow, flow and rain (as a significant source of energy to the system), flow and erosion, flow 
and rain and erosion, respectively. The magnitudes of the forces (4) to (12) and, therefore, 
probability of detachment, are different for these four situations. All scenarios involve 
modelling flow past complex boundary conditions, which is therefore an important criterion 
for potential models. The fluid model must therefore be able to accommodate a high level of 
spatial complexity. Further, there is a dynamic fluid–solid interaction that takes place in 
these environments: the pressure gradients and shear stresses generated by the fluid flow 
causes the surface to erode, which in turn affects the flow structure. This interplay may or 
may not be incorporated into the hydrodynamic model, but it stands as a criterion in 
consideration of potential models. 
 The area of computational fluid dynamics (CFD) has advanced markedly in recent years, 
driven in part by advances in computational technology of solving the governing Navier-
Stokes equations for incompressible flow. There are many and various approaches for 
solving the Navier-Stokes equations. The first is to solve them directly for specific boundary 
and initial conditions. This is an ideal approach; the only potential errors in this Direct 
Numerical Simulation (DNS) method are the ones introduced by the numerical scheme. That 
is, accuracy is highly dependent on the grid system used and level of spatial-temporal 
resolution, limiting the approach to simple geometries. But, because it solves the Navier-
Stokes equations directly, it gives explicit instantaneous velocities. This is extremely useful 
for purposes of erosion modelling, in which the entire distributions of velocity values and 
pressure forces are needed. Due to the physical complexity associated with rough and 
changing solid surfaces, however, it is unrealistic to employ this approach for erosion 
modelling. 
 Secondly, there is Large Eddy Simulation (LES), which filters all instantaneous 
variables so that they operate at the level of grid resolution or larger, thereby reproducing 
only the large-scale flow structure. In particular, a turbulent viscosity value is used, which 
encompasses the range of all viscous forces below the grid resolution scale. This approach 
gives instantaneous velocity and pressure values that are spatially averaged at the scale of 
grid cell width. In consideration of the erosion problem, we note that this scale must not be 
significantly larger than the scale of soil aggregates. 
 As a third approach, decomposing the instantaneous flow into mean and fluctuating 
elements and then averaging gives rise to the Reynolds Averaged Navier-Stokes (RANS) 
equations. This introduces an additional Reynolds stress term, so that some closure model 
relating this stress to the mean flow is required. The RANS approach is more widely 
applicable than DNS, in terms of adapting to complex boundary conditions, but depends on 
the modelling assumptions inherent in the closure scheme. Furthermore, time-averaged 
velocity profiles are not useful in the context of erosion modelling, since it is primarily the 
extremes of the pressure distribution that cause soil detachment. 
 The LES has proven to be a flexible tool for erosion modelling, since it can 
accommodate complex solid boundaries adequately, it gives full distributions of velocity and 
pressure, and is compatible with a variety of methods for incorporating sediment dynamics. 
This modelling method will provide extensive information on velocity and sediment fields, 
which are needed to underpin the stochastic concept. There are many possibilities for, and 
difficulties with, implementing the LES method. The key aspect is the representation of the 
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complicated rough boundary, for which there are many approaches, depending on the desired 
modelling scale. Nonetheless, our methodology for incorporating the results from LES 
simulations into the stochastic models is straightforward. The output from the LES will be in 
the form of time series data of velocity and pressure, calculated at each point on the grid. 
PDFs can then be extracted from spatially averaged time series data by assigning velocity 
and pressure data to a finite set of bins, and normalizing the frequency at which the data fall 
into each bin. Other useful statistical constructs, such as structure functions, can also be 
extracted from the LES time series data. 
 
 
Soil structure modelling 
 
Soil structure is the spatial/temporal distribution of soil physical characteristics within a soil 
body. One of these characteristics is the size (linear, by the area; volumetric, by the weight) 
of soil particles and aggregates. Distribution of soil particles and aggregates by size is 
described with PDFs, and more recently by fractal dimensions (FDs). These distributions 
change in time due to fragmentation of soil aggregates or aggregation of soil aggregates and 
particles. Nevertheless, there are quite a few main types of PDF, estimated empirically and 
associated with all variety of soils in different conditions. There is the logarithmically 
Normal distribution, and the Rosin-Rammler relation and power-law distribution, associated 
with the fractal approach (Perfect et al., 1993). Only the logarithmically Normal distribution 
has theoretical basis (Kolmogorov, 1941). This work described the process of random failure 
of soil particles, when the probability of fragmentation of a particle to some number of parts 
was scale-invariant, and the result was asymptotically logarithmically Normal.  
 The Kolmogorov-type algorithm of soil particles failure can be simulated numerically, 
and in numerical experiments the assumption of scale independence of fragmentation can be 
avoided. These experiments with different relationships between probability of failure and 
particle size show a great stability of result. The logarithmically Normal distribution of soil 
particles is valid in a broad range of scenarios of fragmentation. This distribution is 
asymptotic, but is developed within a first few steps of simulation. Each type of fragmenta-
tion process is characterized by specific rates of mean size decrease and particle size 
variability increase. 
 
 
NUMERICAL EXPERIMENTS 
 
Numerical experiments were undertaken to show the general advantages of the proposed 
stochastic approach for soil erosion calculation. To investigate the most important soil 
erosion factors, the proposed approach was simplified: not all driving and resistance forces 
were included in the aggregate instability inequality; we only considered lift, gravity and 
cohesion forces. The stochastic variables in this inequality are assumed to be independent; 
this allows using the expressions for calculating the probability of the sum and product of 
independent stochastic variables. Three main types of probability distribution functions for 
hydrodynamic and soil characteristics were used: Normal, logarithmically Normal and 
Gamma distribution. The input data consisted of mean bed velocity Um, mean soil cohesion 
C0m, mean soil integrity Is, mean aggregate diameter Dm, and standard deviations for all those 
variables. Numerical experiments were carried out to analyse the influence of these four 
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Fig. 1 The order of soil aggregate concentration calculation with the stochastic model. 

 
 
stochastic factors on the detachment rate. The range of mean flow bed velocity was 0.1–2.2 
m s-1, the range of mean cohesion was 1–30 kPa, mean soil integrity ranged from 0.1 to 4, 
aggregate mean size in the natural soil varied from 1 to 10 mm; and standard deviations for 
all PDFs varied from 0.1 to 1.0–2.0 times the mean value. The sequence of calculation of 
sediment concentration of unstable aggregates from PDFs of driving and resistance forces is 
shown in Fig. 1. The same order is used to obtain the mean vertical velocity and, finally, the 
detachment rate.  
 
 
RESULTS AND DISCUSSION 
 
The following main phenomena were observed (Fig. 2):  
(a) The increase in erosion rate with flow velocity cannot be described with an often-used 

simple power function with a priori known exponent n: DER ~ Un. Calculations show 
that, when velocities are relatively low, the detachment rate increases more rapidly than 
in relatively high velocities. A similar effect was described by Nearing et al. (1997) on 
the basis of empirical soil erosion measurements. In this investigation the phenomenon 
was underpinned theoretically.  
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Fig. 2 Relationship between detachment rate (DER) and the mean flow velocity (U). The 
third variable is soil cohesion. The calculations were performed with soil integrity 0.1; mean 
aggregates size 2 mm, variability coefficients for these stochastic variables 0.3.  

 
 
(b) The analysis of relationships between the hydraulic characteristics of the flow (actual 

flow velocity), the geo-mechanical properties of the soil (aggregates size, cohesion and 
integrity), and the soil aggregates detachment rate makes possible an explanation of the 
difference in relationship types between detachment rate and flow velocity (shear stress, 
stream power) for different soils. This difference is caused by the relative energy of the 
flow: the ratio between driving and resistance forces, as well as by the spatial/temporal 
variability of these forces. In high flow velocities, when driving forces significantly 
exceed stabilizing forces, the rate of erosion increase with flow velocity is relatively 
low. The influence of the variability of soil properties (cohesion, aggregate size, and soil 
integrity) is also less important in determining the soil erosion rate of relatively high 
flow energy. With low flow velocities and with driving forces only slightly exceeding 
the stabilizing forces, erosion rates increased rapidly with flow velocity, and all soil 
properties became sufficient for erosion rate estimation (see Fig. 2 for the influence of 
soil cohesion, other soil properties give the same effect).  

 

 The stochastic erosion models are third-generation models, accepting empirical statisti-
cal models (USLE-type) as first-generation models, and shear stress-based models (WEPP-
type) as second-generation models. In the new model the relationship between soil 
detachment rate and the factors of erosion (flow and soil characteristics) is not obtained in 
advance from some empirical data. They are calculated within the model from the 
information about PDFs of driving and stabilizing forces with the use of basic equations and 
are different for the different combinations of erosion factors. Therefore third-generation 
models promise more precise soil erosion prediction due to more accurate description of soil 
erosion mechanics, but they require better information about flow and soil. 
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