А.Ю.Сидорчук (Московский университет)

морфология и динамика микроформ руслового рельефа

В структурный уровень микроформ входят рифели, дюны и заструги. Их морфология и динамика исследованы методом повторного промера эхолотом по закрепленным продольникам на Тереке, Оби, Дене, Нигере, Днестре в 1978—1986 гг. в диапазоне скоростей потока 0,3-3,0 м/с, глубин - 0,3-25,0 м, уклонов водной поверхности - 0,1-0,6 м/км, диаметров донных наносов - 0,25-1,2 мм.

В связи с существенной стохастической компонентой в процессе формирования микроформ размеры их слабо связаны с гидравлическими параметрами потоков. Повторяемость P длины микроформ L хорошо описывается гамма-распределением $P^* \frac{1}{\Gamma(X)} L^{A^*} \exp(-\beta L) dL$, высоты $\frac{1}{N}$ микроформ — распределением Вейбулла-Гнеденко: $P^* \lambda L^{N-1} \exp(-\lambda L) dL$. Для микроформ характерна независимость коэффициентов вариации $C_{vL} = G_L / L$ и $C_{vL} = G_L / L$ от гидравлических условий; они изменяются в пределах 0.4 ± 0.5 . Здесь $\frac{1}{N}$ и $\frac{1}{N}$ — средние высоты и длины микроформ в однородной по гидравлическим условиям выборке. Параметры гамма-распределения $\frac{1}{N} = \frac{1}{N} =$

Величины \vec{h} и \vec{L} тесно связаны с гидравлическими характеристиками потока — средней скоростью \vec{L} и глубиной \vec{H} , с подвижностью донных наносов, обратной неразмывающей скорости \vec{L}_0 : $\vec{h} = \alpha \sqrt{H} \frac{\vec{u} - \vec{L}_0}{\vec{L}_0} \exp(-\vec{b} \frac{\vec{u} - \vec{L}_0}{\vec{L}_0})$; $\vec{L} = \vec{C} \sqrt{L \vec{H}}$. Коэффициенты здесь зависят от типа микроформ: для рифелей $\vec{O} = 0,2$; $\vec{b} = -0,33$; $\vec{c} = 3,6$; для дюн $\vec{O} = 0,17$; $\vec{b} = -0,27$; $\vec{c} = 11,0$; для эаструг $\vec{O} = 0,15$; $\vec{b} = -0,25$; $\vec{c} = 35,0$. Та-

c=11,0; для заструг c=0,15; b=-0,25; c=35,0. Та-ким образом, рифели в среднем в 3 раза короче дон, а доны в 3 раза короче заструг. Максимальных высот заструги достигают при больших скоростях, чем доны, а доны — при больших скоростях чем рифели (при одинаковых U_0). Соответственно, начало смыва

разных типов микроформ разное: при увеличении скоростей потока

размываются сначала рифели, потом доны и затем заструги. Исходя из уравнения деформации в форме характеристических уравнений и формулы ЛИВТа для расхода донных наносов, скорость смещения микроформ $\mathcal{V} = 0.045 \frac{\Delta}{h} \left(\frac{U}{U_o}\right)^3 (4.5 \, \text{L} - 3.33 \, \text{H}_o)$. Если принять по Г.И.Шамову, то эта ф.Эрмула приобретает структуру формулы для скорости смещения микроформ, предложенную Б.Ф.Снищенко и З.Д.Копалиани.

Вышесказанное относится к микроформам в активной стадии их развития, когда их форма в продольном разрезе практически симметрична: оба откоса выпуклые, их крутизна намного меньше угла естественного откоса, поверхность не осложнена микроформами меньших размеров. В пассивной стадии развития микроформы имеют "классическую" треугольную форму с пологим верховым и крутым (угся естественного откоса) низовым склонами. Их поверхность покрыта микроформами меньших размеров, за счет движения которых они перемещаются. Пассивная стадия наблюдается у дон и заструг. Пля них характерны западывание изменений размеров относительно изменений гидравлических параметров потока. Длины пассивных микроформ увеличиваются с уменьшением водности потока. Длины рифелей на поверхности пассивных дон обычно в 2-2,5 раза меньше длин рифелей на более крупных грядах. Скорость смещения пассивных микроформ в несколько раз меньше, и должна рассчитыватьая с учетом скорости смещения и размером осложняющих их более меских микроформ.