А.Сидорчук

Московский университет

Эрозионные процессы в Новой Зеландии.

Введение.

Точность оценок глобальной денудации и стока наносов (Дедков, Мозжерин, 1984) во многом зависит от детальности региональных исследований. В последнее время стала выясняться большая роль островов Тихоокеанского пояса в глобальном балансе наносов. Эрозионно-денудационные процессы на островах Новой Зеландии во типичны для умеренной и субтропической зон Тихоокеанского пояса, а сравнительно хорошая изученность позволяет дать их качественную и количественную характеристику.

Условия для процессов эрозии и денудации в Новой Зеландии.

Несмотря на небольшую площадь (114700 км² занимает Северный остров и 152700 км² – Южный) разнообразие природных условий в Новой Зеландии очень высокое. Это обусловлено горным и холмистым рельефом, протяженностью островов с севера на юг более чем на 1000 км. В результате на перпендикулярных трассам пассатов западных склонах Южных Альп за год выпадает до 9000-10000 мм осадков, а в орографической тени на равнинах востока Южного острова – лишь 400-600 мм. На Северном острове в горах и на холмах Восточного полуострова в зоне влияния тропических циклонов выпадает более 6000 мм осадков, а на равнинах – до 800 мм. Еще больше разнообразие эрозионного индекса дождя Универсального уравнения почвенной эрозии (USLE): R изменяется от 20 до 92000 МДж*мм/(м²*час). В среднем на островах в год выпадает 1840 мм осадков (среднее R=3500), что создает условия для высокой влагонасыщенности почв и значительного поверхностного стока. Так, в бассейне р. Ваипоа (Восточный полуостров Северного острова) в 1988 г. годовой слой осадков варьировал по площади от 1000 до 2500 мм, а рассчитанный слой стока воды на склонах – от 600 до 1700 мм.

Строение поверхностных пород также предельно разнообразно: насчитывается 65 литологических комплексов от предельно устойчивых изверженных с сопротивлением сдвигу до 250 МПа до рыхлых осадочных со связностью 25 КПа и менее. В горах слой выветрелых пород и почва обычно маломощные, на равнинах наблюдаются мощности осадочных толщ до нескольких десятков метров. Эрозионая устойчивость почв К (в терминах USLE) изменяется от 0.005 до 0.06 т/га на ед. R при средних значениях K=0.027 для Северного острова и K=0.029 для Южного.

Растительность Северного острова до появления человека была в основном лесной, только на центральном вулканическом плато преобладали высокие степи со своеобразной кочкарной травой. С появлением полинезийцев-маори около 800 лет назад локально леса начали выжигаться и сменялись зарослями кустарников. При заселении острова европейцами с середины 19 века леса выжигались и вырубались повсеместно и замещались пастбищами. На Южном острове в естественных условиях вечнозеленные леса росли по склонам Южных Альп, а восточные взгорья и равнины были покрыты травянистой степной растительностью. И полинезийцы, и европейцы осваивали более равнинные территории, так что тип растительности на Южном острове изменился не столь значительно. Так как эрозионно-денудационные процессы под лесом при прочих равных менее активны, чем под кустарником и под травянистым покровом (противоэрозионный индекс растительности USLE в Новой Зеландии для леса равен 0.0 - 0.0001, для кустарника — 0.001-0.005, и для травянистой растительности 0.005-0.01 ед. R), то деятельность полинезийцев увеличила темпы денудации в 2 раза, а европейцев — в 10 раз по сравнению с ненарушенным состоянием.

Типология, распространение и интенсивность эрозионно-денудационных процессов Классификация эрозионно-денудационных процессов в Новой Зеландии была разработана для их картографирования при составлении национального кадастра земель по категориям землепользования, которое проходило в 70-80-е годы (Eyles, 1985). Для каждого выдела (более 64000 полигонов) фиксировались преобладающий и вторичные типы процессов и их интенсивность (в первую очередь, выраженность в рельефе и растительном покрове) по 5 балльной шкале. В дальнейшем каждой такой интенсивности была поставлена в соответствие доля площади, пораженной данным процессом, и мощность грунта, охваченного процессом, что дало нам возможность составить следующую таблицу.

Таблица. Типы и выраженность эрозионно-денудационных процессов в Новой Зеландии. Заголовки: 1- площадь, пораженная процессами, κm^2 ; 2 - % от общей пораженной площади; 3- % от площади острова; 4 – объем деятельного слоя, млн. m^3 . Процессы: D – сели; E - долинный крип; Ss - неглубокие (мощностью <1 м) оползни; Ss - глубокие оползни; Ss - осыпи

		Северны	й остров		Южный остров			
	1	2	3	4	1	2	3	4
D	266.88	8.08	0.23	400.32	537.73	3.03	0.36	806.59

E	552.58	16.7	0.49	1168.43	7.08	0.04	0.005	15.77
Ss	577.10	17.48	0.51	562.96	868.72	4.9	0.6	935.45
Sl	51.46	1.56	0.045	159.86	19.88	0.11	0.013	49.13
G	120.41	3.65	0.11	29.22	161.33	0.91	0.11	68.5
SW	3020.339	40.3	1.17	117.04	10683.25	50.29	5.9	183.26
Sc	401.74	12.17	0.35	80.6889	7228.68	40.72	4.8	322.931

Эрозионно-денудационные процессы разной интенсивности и типов поражают около 12% площади Новой Зеландии, охватывая деятельный слой объемом около 5.8 км³. Некоторые из этих процессов с большим объемом деятельного слоя, такие как долинный крип, характеризуются малыми скоростями (не более нескольких см/год) и их вклад в общую денудацию невелик. Другие, как неглубокие оползни, характеризуются широким распространением, значительным объемом деятельного слоя и достаточно высокой частотой проявления (раз в 5-10 лет в зависимости от литологии и режима осадков). Однако перемещаемый ими материал в основном остается на склонах и у их подножий, редко попадает непосредственно в водотоки. Наконец такие процессы, как склоновый смыв и линейная эрозия, при достаточно большом объеме деятельного слоя, проявляются во время каждого дождя и образуют хорошо сопряженную сеть временных водотоков. Эти продукты смыва и размыва быстро поступают в реки и образуют основную массу взвешенных наносов. В среднем за многолетие с территории Новой Зеландии в океан поступает 211 млн. т взвешенных наносов в год (Hicks et al, 1996). Это около 1-1.5% глобального стока наносов с территории, которая составляет лишь 0.18 % всей суши. Рельеф, климат, разнообразие процессов и хозяйственная деятельность человека приводят к тому, что денудация Новой Зеландии в 8 раз интенсивнее, чем среднеглобальная, а локально близка к катастрофической.

Литература.

- 1. Дедков А.П., Мозжерин В.И. Эрозия и сток наносов на Земле. Казань:Изд-во Казанск. ун-та, 1984. 264 с.
- 2. Eyles, G.O. 1985. The New Zealand Land Resource Inventory Erosion Classification. Water and Soil Miscellaneous Publication No. 85. 61 pp.
- Hicks D.M., Jane Hill and Ude Shankar. 1996. Variation of suspended yields around New Zealand: the relative importance of rainfall and geology. IAHS Publication No. 236, Erosion and Sediment Yield: Global and Regional Perspectives: p.149-156.